

جامعة البلقاء التطبيقية

Engineering Program			
Specialization	Medical Equipment Technology		
Course Number	020406102		
Course Title	Advanced Physics		
Credit Hours	2		
Theoretical Hours	2		
Practical Hours	0		

جامعة البلقاء التطبيقية

Brief Course Description:

The physical concepts to be studied in this course includes: The Magnetic Field and the Faraday's Law of Induction, inductance and alternating current circuits

Course Objectives:

By the end of the course the students should be able to:

- 1. Become familiar with the physical concepts in magnetism.
- 2. Apply faraday laws.
- 3. Provide a description of how to solve a problem, justifying their choices.
- 4. Become familiar with the physical concepts of inductance
- 5. Understand what the AC source is.
- 6. Understand what the RLC circuit is.
- 7. calculate power and energy in AC circuit

Al-Balqa' Applied University

جامعة البلقاء التطبيقية

Detailed Course Description:

Unit Number	Unit Name	Unit Content	Time Needed
1.	MAGNETIC FIELDS	 The Magnetic Field and Forces. Motion Of a Charged Particle In a Uniform Magnetic Field Magnetic Force On a Current-Carrying Conductor Torque On a Current Loop In a Uniform Magnetic Field Application Involving Charged Particles Moving In a Magnetic Field The Hall Effect 	9
2.	SOURCES OF THE MAGNETIC FIELF	 The biot-savart law The magnetic force between two parallel conductors Ampere's law The magnetic field of a solenoid Gauss's law in magnetism The magnetic field of the earth 	7
3.	FARADAY'S LAW	 Faraday's Law Of Induction Motional emf Lenz's Law Induced emf And Electric Fields Generator and motors Eddy current 	7
4.	INDUCTANCE	 Self-Induction And Inductance RL Circuits Energy In Magnetic Field Mutual Inductance The RLC Circuit 	8
5.	ALTERNATING CURRENT CIRCUITS	 Ac Sources Resistor In an AC Circuit Inductor In an AC Circuit Capacitor In an AC Circuit The RLC Series Circuit The RLC parallel Circuit Power In an AC Circuit Resonance in a series RLC circuit The transformer and power transmission Rectifiers and filters 	11

Evaluation Strategies:

Exams		Percentage	Date
Exams	Med-Term Exam	40%	//
	Final Exam	50%	//
Homework and Projects		10%	
Discussions and lecture			
presentations			

Teaching Methodology:

✤ Lectures-boards

Text Books & References:

Text Book:

1. Raymond A. Serway and John W. Jewett, "Physics for scientists and Engineers", 7th edition, Thomson Brooks Publisher, 2007.